Building Life-Cycle Management

01	Facility Management	
Compulsory	Semester: M2S1 ECTS credits: 5	
	Lectures: 60h	Recommended personal work : 65h

Expected Learning Outcomes

The student should be able to

- Restate the key objectives of Facility Management
- Discuss the relationship between Facility Management and Real Estate Management
- Describe the relationship between Facility Management and Human Resource Management, Workplace Productivity and Health and Safety issues
- Describe and develop Facility Management and Design briefings for a new or refurbished facility
- Describe and outline a Facility Management Strategy for a specific organization
- Identify strength and weaknesses regarding insourcing and outsourcing of services for a specific organization
- Develop service specifications
- Describe and apply different tools and methods for performance management
- Describe the basic processes and tools of maintenance management and identify constraints for maintenance actions
- Define and implement an information management strategy
- Discuss issues regarding Change management and innovation in relation to facility management

Content

Introduction - Principles, process and procedures	
Facility Planning and FM strategy	
HR management and Workplace productivity	6,0
Health, safety and security	
Outsourcing, procurement and partnerships	
Performance management	
Maintenance management	
Information management	
Change management and innovation	

Prerequisites

02	Sustainable Buildings	
Compulsory	Semester : M2S1	ECTS credits : 5
	Lectures: 60h	Recommended personal work : 65h

The module addresses sustainable buildings through a holistic approach where the students should acquire new skills relating to previous knowledge in the area in order to define and apply environmental, economic and social/behavioural criteria relevant to different phases of the building life-cycle.

The course treats in detail the concepts, methodologies, tools and processes required for designing, building and operating sustainable buildings and evaluating their resource efficiency as well as environmental and socio-economic performance over their life-cycle.

Expected Learning Outcomes

The student should be able to

- Apply the principles of triple-bottom-line approach in the iterative and multidisciplinary process of conceptualizing and designing a high-performance building
- Choose and size building- components and systems in order to achieve the smallest feasible life-time environmental impact
- Employ a variety of tools and methods for evaluating the environmental performance of buildings in different stages of their life-cycle

Content

Introduction - The triple-bottom-line approach	
Bioclimatic architecture	
High-performance buildings and resource efficiency	
Integrated systems approach to Building Services design	
Buildings, clusters, precincts and cities	
Modelling tools for high-performance building design	

03	Smart Buildings Semester: M1S2 ECTS credits: 5	
Compulsory		
	Lectures : 60h	Recommended personal work : 65h

The student should be able to

- Define key concepts related to Smart Buildings
- Describe components, tools and methods that can be used to measure, analyse and optimize performance of individual buildings as well as building clusters
- Describe technologies used for user-adapting and user-interaction
- Describe technologies (components, networks, protocols, tools) used for interconnecting buildings and building components and area distribution systems
- Define and give examples of the use of smart and connected materials

Content

Introduction - User-adapted and smart buildings	
Follow up/measurement, analysis and optimisation of Building performance	
Big data, inter-connectivity, cloud-services, IoT, machine learning, Al	
User-adaption and user-building interaction	
Smart materials	
From smart buildings to smart cities	

04	Circular Economy in Real Estate	
Compulsory	Semester: M1S2 ECTS credits: 5	
	Lectures : 60h	Recommended personal work : 61h

The student should be able to

- Define and use key concepts of Real Estate Management (Real Estate Law, Valuation, Finance and Investment, Contracts, Land Development, ...)
- Analyse technical, environmental, economic, and organizational of alternative designs and implementations of a project, especially with regard to Resilience and "Future-proof Solutions"
- Describe and develop circular renovation strategies for individual buildings and groups of buildings (clusters, precincts, ...)

Content

Introduction to Real Estate Economics and Management	
Land-use, space and adaptability	
Planning and design of Resilient buildings and Future-proof solutions	
Circular Renovation Strategies	12,0
Life-cycle- and total- cost analysis	12,0

05	Lab project	
Compulsory	Semester :	ECTS credits : 10
	Lectures and tutorials: 120	Recommended personal work :

Content

_		
	Individual R&D project in relation to one of the compulsory modules	120,0

06	Real case project	
Compulsory	Semester: ECTS credits: 10	
	Lectures and tutorials: 120	Recommended personal work :

Indicative content

Advanced managerial and organizational issues in early project phases	
CPM	108h

